Reporting Sodium Channel Activity Using Calcium Flux: Pharmacological Promiscuity of Cardiac Nav1.5 s
نویسندگان
چکیده
Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wildtype (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a differentcolored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (.50% inhibition) of around 13% at 10 mM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.
منابع مشابه
Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.
Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manif...
متن کاملProtein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel.
The α-subunit of the cardiac voltage-gated sodium channel (NaV1.5) plays a central role in cardiomyocyte excitability. We have recently reported that NaV1.5 is post-translationally modified by arginine methylation. Here, we aimed to identify the enzymes that methylate NaV1.5, and to describe the role of arginine methylation on NaV1.5 function. Our results show that protein arginine methyl trans...
متن کاملTuning up mitochondria for angiogenesis
W ithout voltage-gated sodium channels, heart muscle cells can’t keep a beat. Lowe et al. show how these cells, known as cardiomyocytes, direct channels to the right domain of their plasma membrane. Opening Nav1.5 sodium channels allows an inrush of sodium ions that depolarizes a cardiomyocyte. Patients who carry a faulty version of the channel are at risk for potentially lethal heart arrhythmi...
متن کاملCalmodulin and Ca2+ control of voltage gated Na+ channels
The structures of the cytosolic portion of voltage activated sodium channels (CTNav) in complexes with calmodulin and other effectors in the presence and the absence of calcium provide information about the mechanisms by which these effectors regulate channel activity. The most studied of these complexes, those of Nav1.2 and Nav1.5, show details of the conformations and the specific contacts th...
متن کاملCardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation
Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmito...
متن کامل